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Abstract. We study some scalar curvature invariants on geodesic spheres
and use them to characterize several kinds of Riemannian manifolds such as
homogenous manifolds and in particular, the two-point homogeneous spaces
and the Damek-Ricci spaces.

1. Introduction

In order to understand the geometry of a Riemannian manifold different objects
have been considered. Among them, the symmetries of the manifold, bundles where
the manifold is the base or families of submanifolds such as geodesic spheres, tubes
or disks, have been used extensively [10], [11], [13], [14]. The properties of those
objects influence and are influenced by the geometry of the ambient space (see, for
example, [5], [16], and the references therein).

On the other hand, the fact that the curvature tensor of a Riemannian manifold
is so difficult to handle, motivated the investigation of functions or operators as-
sociated to it. Examples are the sectional curvature, the scalar curvature and the
Jacobi operator, among others [2], [8]. In this paper, we focus on scalar curvature
invariants which reflect important properties, such as local homogeneity [15].

The purpose of this work is to link the study of geodesic spheres with the investi-
gation of scalar curvature invariants [3], [4], [5]. The whole space of scalar curvature
invariants is generated by the so-called Weyl invariants and this suggested to con-
sider only Weyl invariants at first glance. In view of our applications, the simple
ones, that is, those not involving covariant derivatives of the curvature tensor are
the ones to start with.

For an arbitrary simple Weyl invariant on a geodesic sphere, we give an explicit
expression of the first terms in its power series expansion in function of the radius,
as shown in Theorem 3.4. By integrating that invariant, we obtain the correspond-
ing total scalar curvature of a geodesic sphere, whose power series expansion is
discussed in Theorem 4.4. The geometrical meaning of the first terms in those
expansions is studied, leading to characterizations of the two-point homogeneous
spaces among Riemannian manifolds with adapted holonomy (Theorem 5.6). We
emphasize that unlike the volume conjecture [11], where such a characterization
has not been achieved in the most general context, it can be obtained for a number
of total scalar curvatures (Example 5.7).
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The paper is organized as follows. In Section 2, we introduce the notions and
conventions used throughout the paper. In Section 3, we give power series expan-
sions for several geometric objects defined on geodesic spheres and use them to
give some first characterizations for some classes of spaces such as Damek-Ricci
and two-point homogeneous spaces. Section 4 deals with total scalar curvature of
geodesic spheres. Finally, we give further characterization results for homogeneous
and two-point homogeneous manifolds in Section 5.

2. Curvature and Weyl invariants

Let (Mn, g) be a Riemannian manifold of dimension n. We denote by ∇ the Levi
Civita connection of g, and by R its curvature tensor defined by RXY = ∇[X,Y ] −
[∇X ,∇Y ], where X and Y are vector fields on M . We set RXY V W = g(RXY V, W ).
The Ricci tensor is defined by ρ = tr 13R, where tr 13 means the trace with respect
to the first and third indices. For any tensor field ω we set ∇0ω := ω and we denote
by ∇lω the l-the covariant derivative of ω.

We now explain some notions from the theory of invariants, thereby mainly
following [15]. Let FM = (FM,π, M, Gl(n,R)) be the bundle of linear frames over
(M, g). For k ≥ 1 we shall denote by T kM = ∪m∈M (TmM×· · ·×TmM) the bundle
over M with standard fibre Rn× k. . . ×Rn and structure group Gl(n,R) which is
associated to the principal bundle FM . If k = 0 we set T 0M := M .

A partial Weyl invariant, W , with k degrees of freedom is a map

W : T kM −→ R
(v1, . . . , vk) 7→ tr (g ⊗ · · · ⊗ g ⊗∇l1R⊗ · · · ⊗ ∇lν R)(v1, . . . , vk)

(2.1)

where lj ∈ N ∪ {0}, j ∈ {1, . . . , ν}, ν ∈ N, and tr is a product of traces [1] with
respect to some permutation of the indices. Two partial Weyl invariants W1 and W2

are equal if and only if W1(v1, . . . , vk) = W2(v1, . . . , vk) for any (v1, . . . , vk) ∈ T kM
and every Riemannian manifold (M, g).

We say that a partial Weyl invariant W is simple if its construction does not
involve covariant derivatives of the curvature tensor, that is, W can be written as
W = tr (g ⊗ · · · ⊗ g ⊗R⊗ · · · ⊗R).

In particular, a Weyl invariant, as defined in [15], is a partial Weyl invariant
with zero degrees of freedom, that is, k = 0.

We define the degree of a partial Weyl invariant given by (2.1) as

deg W = l1 + · · ·+ lν + 2ν. (2.2)

We point out that other authors define the degree (or order) of a curvature invariant
as half this number. Equivalently, the degree of a partial Weyl invariant is half the
number of derivatives of the metric tensor involved in its construction. Clearly,
if W1 and W2 are two partial Weyl invariants, then W1W2 can be considered as
another partial Weyl invariant in the obvious way and

deg W1W2 = deg W1 + deg W2. (2.3)

For instance, the curvature tensor R and the Ricci tensor ρ are simple partial Weyl
invariants of degree 2, the former with 4 degrees of freedom and the latter with 2.

By definition, a partial scalar curvature invariant is a linear combination of
partial Weyl invariants. If all partial Weyl invariants involved in the construction
of a partial scalar curvature invariant have the same degree d, then this partial
scalar curvature invariant is said to have degree d.
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Given a tangent vector u ∈ TM and a partial scalar curvature invariant S
with k degrees of freedom, we say that S(u, k. . ., u) is a partial directional curvature
invariant or to be more specific, a partial curvature invariant in the direction of u.

A scalar curvature invariant, as defined in [11] or [15], is a polynomial in the
components of the curvature tensor and its covariant derivatives that does not
depend on the choice of orthonormal basis used to build it. It follows from Weyl’s
theory of invariants [1], [17], that the scalar curvature invariants are precisely the
traces of the curvature tensor and its covariant derivatives. As a consequence, a
scalar curvature invariant is a linear combination of Weyl invariants. Alternatively,
a scalar curvature invariant is a partial scalar curvature invariant with zero degrees
of freedom. We recall here that a scalar curvature invariant has always even degree.

Let us denote by I(ν, n) the vector space of simple scalar curvature invariants of
degree 2ν in a manifold of dimension n.

It is well known that for n ≥ 2, I(1, n) is a vector space of dimension 1 gen-
erated by the scalar curvature τ = tr ρ, that is, τ =

∑n
i=1 ρii, where {e1, . . . , en}

is an orthonormal basis of TmM . From now on, we use the notation ωijk... =
ω(ei, ej , ek, . . . ), ∇α

ijk... = ∇α
ei,ej ,ek,..., and so on.

If n ≥4, I(2, n) is a vector space of dimension 3 spanned by

τ2, ‖R‖2 =
∑

R2
ijkl, ‖ρ‖2 =

∑
ρ2

ij . (2.4)

For n ≥ 6, the vector space I(3, n) has dimension 8 and it is spanned by the
following basis:

τ3, 〈ρ⊗ ρ, R̄〉 =
∑

ρijρklRikjl,

τ‖ρ‖2, 〈ρ, Ṙ〉 =
∑

ρijRiklpRjklp,

τ‖R‖2, R̆ =
∑

RijklRijpqRklpq,

ρ̆ =
∑

ρijρikρjk,
˘̃
R =

∑
RijklRipkqRjplq.

(2.5)

Remark 2.1. Let W = tr (R⊗ ν· · · ⊗R) be a Weyl invariant of degree 2ν. In an
(n − 1)-dimensional Riemannian manifold of constant sectional curvature λ the
curvature tensor can be written as R = λR0, where R0 can be expressed with
respect to an orthonormal basis as

R0
ijkl = δikδjl − δilδjk. (2.6)

Then, W = tr (R⊗ ν· · · ⊗R) = λνtr (R0⊗ ν· · · ⊗R0) = ĀW (n − 1)λν where ĀW is
a polynomial that only depends on W . Moreover, if n ∈ {1, 2}, then R = 0 and
hence we have ĀW (0) = ĀW (1) = 0. Thus, ĀW can be written as ĀW (n − 1) =
(n− 1)(n− 2)AW (n− 1), where AW is another polynomial. Then, for the constant
curvature case we have

W = (n− 1)(n− 2)AW (n− 1)λν . (2.7)

Example 2.2. The polynomials AW corresponding to the Weyl invariants (2.4) and
(2.5) can be explicitly given as follows. Suppose (Mn−1, g) has constant sectional
curvature λ. First, we have τ = (n− 1)(n− 2)λ, and thus,

Aτ (n− 1) = 1. (2.8)

Also, for the Weyl invariants of degree 4,

A‖R‖2(n− 1) = 2, A‖ρ‖2(n− 1) = n− 2, Aτ2(n− 1) = (n− 1)(n− 2). (2.9)
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The expressions corresponding to the invariants (2.5) are summarized in the
following table:

W AW (n− 1) W AW (n− 1)

τ3 (n− 1)2(n− 2)2 〈ρ⊗ ρ, R̄〉 (n− 2)2

τ‖ρ‖2 (n− 1)(n− 2)2 〈ρ, Ṙ〉 2(n− 2)

τ‖R‖2 2(n− 1)(n− 2) R̄ 4

ρ̌ (n− 2)2 ˇ̄R n− 3

3. Weyl invariants for geodesic spheres

A geodesic sphere, Gm(r), with center m and radius r, is defined as

Gm(r) = expm

(
Sn−1(r)

)
, (3.1)

where expm is the exponential map at m and Sn−1(r) is the Euclidean sphere of
radius r in the tangent space at m, that is, Sn−1(r) = {x ∈ TmM : g(x, x) = r2}.
We always assume that r < i(m), where i(m) is the injectivity radius at the point
m. Hence, geodesic spheres are the level sets of the radial distance function, that
is, Gm(r) = {p ∈ M : d(m, p) = r}.

The purpose of this section is to study simple Weyl invariants on geodesic spheres.
Thus, it would be convenient to express them in terms of geometrical data of the
ambient manifold. Unfortunately, an explicit expression has not been achieved so
far in full generality, not even in the simplest cases. We will content ourselves with
the power series expansion of a simple Weyl invariant of a geodesic sphere. That
will be enough for the purposes of this paper. In order to provide the power series
expansion of a Weyl invariant, we use the second fundamental form of a geodesic
sphere. Then, its curvature tensor can be calculated from the Gauss equation and
the expression of an arbitrary Weyl invariant can then be obtained from it.

Lemma 3.1. If σ denotes the second fundamental form of the geodesic sphere
Gm(r), then we have the power series expansion

σij (expm(ru)) =
s−1∑

α=−1

rα

(α + 1)!
σα+1

ij (u) + O (rs) , (3.2)

where σα
ij(u), α ≥ 2, is a partial scalar curvature invariant of M at m with α + 2

degrees of freedom and degree α. The first terms of this expansion are

σij (expm(ru))=
1
r
δij − r

3
Ruiuj(m)− r2

4
∇uRuiuj(m)

−r3

(
1
45

n∑
a=1

RuiuaRujua +
1
10
∇2

uuRuiuj

)
(m) + O

(
r4

)
.

(3.3)

Proof. Using the Ledger recursion formula [4], [16], we have

σ0
ij(u) = δij , σ1

ij(u) = 0,

σα
ij(u) = −α(α− 1)

α + 1
∇α−2

u...uRuiuj(m)− 1
α + 1

α−2∑

β=2

(
α
β

) n∑
γ=1

σβ
iγ(u)σα−β

γj (u),
(3.4)

for α ≥ 2. The result now follows by induction. ¤
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Lemma 3.2. Let R̃ denote the curvature tensor of a geodesic sphere Gm(r). Then

R̃ijkl (expm(ru)) =
s−2∑

α=−2

rαR̃α+2
ijkl (u) + O

(
rs−1

)
, (3.5)

where R̃α
ijkl(u), α ≥ 2, is a partial curvature invariant at m of degree α such that

for all the Weyl invariants used in its construction the number of degrees of freedom
has the same parity as α. More specifically we obtain

R̃ijkl (expm(ru)) =
1
r2

(
δikδjl − δilδjk

)

+
(
Rijkl − 1

3
δikRujul +

1
3
δilRujuk +

1
3
δjkRuiul − 1

3
δjlRuiuk

)
(m)

+r
(
∇uRijkl − 1

4
δjl∇uRuiuk +

1
4
δjk∇uRuiul

+
1
4
δil∇uRujuk − 1

4
δik∇uRujul

)
(m)

+r2
(
−1

9
RuiulRujuk +

1
9
RuiukRujul

− 1
45

δik

n∑
a=1

RujuaRulua +
1
45

δil

n∑
a=1

RujuaRukua

+
1
45

δjk

n∑
a=1

RuiuaRulua − 1
45

δjl

n∑
a=1

RuiuaRukua

+
1
2
∇2

uuRijkl − 1
10

δjl∇2
uuRuiuk +

1
10

δjk∇2
uuRuiul

+
1
10

δil∇2
uuRujuk − 1

10
δik∇2

uuRujul

)
(m) + O

(
r3

)
.

(3.6)

Proof. The Gauss equation relates the intrinsic curvature tensor of a submanifold
to that of the ambient space by means of the second fundamental form as follows:

R̃xyvw = Rxyvw + σxvσyw − σxwσyv. (3.7)

Using the power series expansion along a geodesic with respect to a parallel basis
Rijkl (expm(ru)) = Rijkl(m) + r∇uRijkl(m) + r2

2 ∇2
uuRijkl(m) + · · · and plugging

the above expression and (3.2) into (3.7), we have [4], [5]

R̃0
ijkl(u) = δikδjl − δilδjk = R0

ijkl,

R̃1
ijkl(u) = 0,

R̃α
ijkl(u) =

1
(α− 2)!

∇α−2
u...uRijkl(m)

+
1
α!

α−3∑

β=1

(
α

β + 1

) (
σβ+1

ik (u)σα−β−1
jl (u)− σβ+1

il (u)σα−β−1
jk (u)

)
,

(3.8)

for α ≥ 2, and the first part of the result follows by induction. Finally, in formula
(3.8) there are two clearly different terms. The first one 1

(α−2)!∇α−2
u···uRijkl(m) is

a partial scalar curvature invariant with α + 2 degrees of freedom. The second
addend is another partial curvature invariant with α + 4 degrees of freedom. The
last statement is clear from Lemma 3.1 and (2.3). ¤
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The following lemma is a technical result that will be needed in Theorem 3.4.

Lemma 3.3. Let (V, 〈 , 〉) be an inner product vector space of dimension n ≥ 2
and tr a total trace in the space of covariant tensors of order 4ν over V . If R is
an algebraic curvature tensor on V , Sc(R) its scalar curvature and W the algebraic

invariant defined by W = tr (R⊗ ν· · · ⊗R), then

tr

(
ν∑

α=1

R0 ⊗ · · ·⊗
α

↓
R ⊗ · · · ⊗R0

)
= νAW (n)Sc(R). (3.9)

Proof. Clearly, tr (
∑ν

α=1 R0 ⊗ · · · ⊗R⊗ · · · ⊗R0) is a scalar curvature invariant of
degree two, and hence it is a multiple of the scalar curvature. Then, put

a Sc(R) = tr

(
ν∑

α=1

R0 ⊗ · · ·⊗
α

↓
R ⊗ · · · ⊗R0

)
. (3.10)

The above formula is true for each algebraic curvature tensor R in V . If we take
R = R0 we have

an(n− 1) =
ν∑

α=1

tr


R0 ⊗ · · ·⊗

α

↓
R0 ⊗ · · · ⊗R0




= ν tr
(
R0 ⊗ · · · ⊗R0

)
= ν n(n− 1)AW (n).

(3.11)

Thus a = ν AW (n). ¤

Theorem 3.4. Let W̃ be a simple intrinsic Weyl invariant of degree 2ν, ν > 1, on
a geodesic sphere Gm(r). Then we have

W̃ (expm(ru)) =
s−2ν∑

α=−2ν

rαW̃α+2ν(u) + O
(
rs−2ν+1

)
, (3.12)

where W̃α(u) is a partial curvature invariant of degree α in the direction of u such
that the degree of freedom of all the Weyl invariants involved in its construction has
the same parity as α. More specifically, we have

W̃0(u) = (n− 1)(n− 2)AW (n− 1),

W̃1(u) = 0,

W̃2(u) = ν AW (n− 1)

(
τ − 2(n + 1)

3
ρuu

)
(m),

W̃3(u) = ν AW (n− 1)

(
∇uτ − n + 2

2
∇uρuu

)
(m),

W̃4(u) = ω4(u) +
ν

2
AW (n− 1)

(
∇2

uuτ − 2(n + 3)
5

∇2
uuρuu

)
(m),

(3.13)
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where ω4(u) is a simple directional curvature invariant of degree four given by

ω4(u) = ν AW (n− 1)


−2n + 1

45

n∑

a,b=1

R2
uaub +

1
9
ρ2

uu


 (m)

+B1
W (n− 1)


‖R‖2 − 4

n∑

a,b,c=1

R2
uabc +

4(n + 12)
9

n∑

a,b=1

R2
uaub

−8
3

n∑

a,b=1

ρabRuaub +
4
9
ρ2

uu


 (m)

+B2
W (n− 1)


‖ρ‖2 +

n2

9

n∑

a,b=1

R2
uaub −

2n

3

n∑

a,b=1

ρabRuaub

−2
n∑

a=1

ρ2
ua +

3n + 14
9

ρ2
uu −

2
3
τρuu

)
(m)

+B3
W (n− 1)

(
τ − 2(n + 1)

3
ρuu

)2

(m),

(3.14)

and B1
W , B2

W and B3
W are polynomials depending only on the dimension n− 1 and

satisfying

2 B1
W (n−1)+(n−2)B2

W (n−1)+(n−1)(n−2)B3
W (n−1) =

(
ν
2

)
AW (n−1). (3.15)

Moreover, B1
W , B2

W and B3
W are defined by formula (3.14).

Proof. Using the notation of Lemma 3.2, we have

(R̃⊗ · · · ⊗ R̃)i1j1k1l1···iνjνkν lν =

s−2ν∑
α=−2ν

rα


 ∑

β1+···+βν=α

R̃β1+2
i1j1k1l1

(u) · · · R̃βν+2
iνjνkν lν

(u)


 + O

(
rs−2ν+1

)
.

(3.16)

By taking traces in (3.16), the result of Lemma 3.2 and the rule (2.3) to compute
the degrees, we get the first result of Theorem 3.4.

Now, we turn our attention to the explicit expressions (3.13). As R̃ is the
curvature tensor of the geodesic sphere Gm(r), the coefficients of its power series
expansion (3.5) are algebraic curvature tensors in u⊥. Using (3.6) and Remark 2.1,
we get

W̃0(u) = tr
(
R̃0

i1j1k1l1
(u) · · · R̃0

iνjνkν lν
(u)

)

= tr
(
R0⊗ ν· · · ⊗R0

)

= (n− 1)(n− 2)AW (n− 1).

(3.17)

Using the notation of Lemma 3.2, as R̃1 = 0, we have

W̃1(u) = tr

(
ν∑

α=1

R̃0
i1j1k1l1(u) · · · R̃1

iαjαkαlα(u) · · · R̃0
iνjνkν lν (u)

)
= 0. (3.18)
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Using Lemma 3.3 and (3.6), we obtain

W̃2(u) = tr

(
ν∑

α=1

R̃0
i1j1k1l1(u) · · · R̃2

iαjαkαlα(u) · · · R̃0
iνjνkν lν (u)

)

= tr

(
ν∑

α=1

R0
i1j1k1l1 · · · R̃2

iαjαkαlα(u) · · ·R0
iνjνkν lν

)

= νAW (n− 1)Sc(R̃2),

(3.19)

and from the definition of R̃2 in (3.6) we have Sc(R̃2) = τ − 2(n+1)
3 ρuu. Hence

W̃2(u) = νAW (n− 1)

(
τ − 2(n + 1)

3
ρuu

)
(m). (3.20)

Similarly, using Lemma 3.3, (3.6) and the fact that Sc(R̃3) = ∇uτ − n+2
2 ∇uρuu,

we obtain

W̃3(u) = tr

(
ν∑

α=1

R̃0
i1j1k1l1(u) · · · R̃3

iαjαkαlα(u) · · · R̃0
iνjνkν lν (u)

)

= tr

(
ν∑

α=1

R0
i1j1k1l1 · · · R̃3

iαjαkαlα(u) · · ·R0
iνjνkν lν

)

= ν AW (n− 1)

(
∇uτ − n + 2

2
∇uρuu

)
(m).

(3.21)

Finally, using (3.16), we get for ν > 1,

W̃4(u)= tr

(
ν∑

α=1

R0
i1j1k1l1 · · · R̃4

iαjαkαlα(u) · · ·R0
iνjνkν lν

)

+tr

(∑

α<β

R0
i1j1k1l1 · · · R̃2

iαjαkαlα(u) · · · R̃0
iγjγkγ lγ (u) · · ·

· · · R̃2
iβjβkβlβ

(u) · · ·R0
iνjνkν lν

)
.

(3.22)

For the first term of the above equality we again use Lemma 3.3 and (3.6) to get

ν AW (n− 1)
(
−2n + 1

45

n∑

a,b=1

R2
uaub +

1
9
ρ2

uu +
1
2
∇2

uuτ − n + 3
5

∇2
uuρuu

)
(m). (3.23)

Now, we briefly discuss the second term of (3.22), which is a simple directional
curvature invariant of degree 4. Using the method of Lemma 3.3 to write the
second addend of (3.22) as a linear combination of curvature invariants of degree
4 associated to R̃2 (see the basis (2.4)) we get expressions (3.14) and (3.15) . We
delete the details. ¤

Remark 3.5. If ν = 1 in the previous theorem, we essentially have to deal with the
scalar curvature τ̃ . In this case, the second addend of (3.22) does not appear and
ω4(u) = 0. Then, τ̃(expm(ru)) =

∑s−2
α=−2 rαSc(R̃α+2) + O

(
rs−1

)
. See [5] and [4]

for an explicit power series expansion.
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Example 3.6. The coefficients B1
W and B2

W in (3.14) for Weyl invariants of degree
4 and 6 can be given as follows:

W ‖R‖2 ‖ρ‖2 τ2

B1
W (n− 1) 1 0 0

B2
W (n− 1) 0 1 0

W τ3 τ‖ρ‖2 τ‖R‖2 ρ̌ 〈ρ⊗ ρ, R̄〉 〈ρ, Ṙ〉 R̄ ˇ̄R

B1
W (n− 1) 0 0 (n− 1)(n− 2) 0 0 n− 2 6 − 3

2

B2
W (n− 1) 0 (n− 2)(n− 1) 0 3(n− 2) 2n− 5 4 0 3

Now, we derive some geometrical consequences of the expansions in Theorem
3.4. We recall that a manifold (M, g) is Einstein if ρ = τ

n g. Moreover, an Einstein
manifold is 2–stein if there exists a constant λ such that

n∑

i,j=1

R2
xixj = λ g(x, x)2, (3.24)

for all tangent vectors x.

Theorem 3.7. Let (Mn, g) a Riemannian manifold and W a simple Weyl invariant
of degree 2ν, ν > 1, such that

AW (n− 1) 6= 0,

(2n + 1)νAW (n− 1)− 20(n + 12)B1
W (n− 1) + 5n2B2

W (n− 1) 6= 0,

(2n + 1)νAW (n− 1) + 40nB1
W (n− 1) + 5n2B2

W (n− 1) 6= 0,

(3.25)

If the corresponding Weyl invariants of geodesic spheres W̃ (expm(ru)) depend nei-
ther on the center m nor on the direction u then, M is 2–stein.

Proof. As AW (n−1) 6= 0, using the coefficient W̃2(u) given in Theorem 3.4, we get
that τ − 2(n+1)

3 ρuu is independent of m and u. This implies that the manifold M

is Einstein. Now, the coefficient W̃4 is also constant by hypothesis. Using the fact
that M is Einstein, we obtain

B1
W (n− 1)‖R‖2 − 4B1

W (n− 1)
n∑

a,b,c=1

R2
uabc +

(
−2n + 1

45
νAW (n− 1)

+
4(n + 12)

9
B1

W (n− 1) +
n2

9
B2

W (n− 1)

) n∑

a,b=1

R2
uaub = constant.

(3.26)

The above equation implies that the manifold is 2-stein if the last two conditions
of (3.25) hold. For example, see [6, Lemma 4] for details. ¤

Remark 3.8. Let W be a simple Weyl invariant such that AW (n − 1) 6= 0. If M
is a Riemannian manifold such that the corresponding Weyl invariants of geodesic
spheres W̃ (expm(ru)) depend only on the radius, then the above proof shows that
M is an Einstein manifold.
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Remark 3.9. It was proved in [4] that if τ̃(expm(ru)) depends neither on the center
nor on the direction u, then the manifold is 2-stein. Moreover, if the manifold is
assumed to be analytic, then it is a harmonic space.

Example 3.10. It can easily be shown that conditions (3.25) hold for all the
curvature invariants of Example 3.6. Hence, those may be used to characterize
2-stein manifolds.

Theorem 3.11. Let (M, g) be an analytic Riemannian manifold with constant
Weyl invariants and such that all its small geodesic spheres have constant scalar
curvature. Then, M is locally isometric with a two-point homogeneous manifold or
a Damek-Ricci space.

Proof. As all the Weyl invariants of M are constant, M is locally homogeneous
[15]. Also, as all the small geodesic spheres have constant scalar curvature and the
manifold is analytic, M is harmonic [4]. Homogenous harmonic manifolds have been
classified in [12]. According to this paper, M is locally isometric with a two-point
homogeneous manifold or a Damek-Ricci space. ¤

Corollary 3.12. Let (M, g) be an analytic Riemannian manifold with constant
Weyl invariants such that all its small geodesic spheres also have constant Weyl
invariants. Then, M is locally isometric to a two-point homogeneous space.

Proof. Using the previous theorem, M is locally isometric to a two-point homoge-
neous space or a Damek-Ricci space. On the other hand, all the small geodesic
spheres of M are homogenous, as they also have constant Weyl invariants. Hence,
M is an Osserman space [8]. But a Damek-Ricci space cannot be an Osserman space
unless it is symmetric [2]. The result follows because locally symmetric Damek-Ricci
spaces are locally isometric to a two-point homogeneous space. ¤

4. Total scalar curvatures of geodesic spheres

Since a geodesic sphere is a compact Riemannian manifold one may consider the
integral of the curvature invariant S for geodesic spheres. Following for example [4],
we define the total scalar curvature S associated to the scalar curvature invariant
S by

S(m, r) =
∫

Gm(r)
S̃ = rn−1

∫

Sn−1

(S̃ θm)(expm(ru))du, (4.1)

where S̃ is the corresponding curvature invariant of Gm(r), θm is the volume den-
sity function at m and du is the volume element of Sn−1. Then, S is a function
depending on the base point and the radius of the geodesic sphere.

Example 4.1. When (M, g) is a Riemannian manifold of constant sectional cur-
vature λ > 0, each geodesic sphere Gm(r) has constant sectional curvature λ̃ =

λ
sin2 r

√
λ

(here, we only consider the positive curvature case; similar expressions can

be obtained for negative and zero curvature). We now compute the total scalar
curvature associated to a Weyl invariant W of degree 2ν. From Remark 2.1 we get

W̃ = (n− 1)(n− 2)AW (n− 1)

(
λ

sin2 r
√

λ

)ν

. (4.2)
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Furthermore, in a space of constant sectional curvature λ > 0 the volume density

function is θm (expm(ru)) =
(

sin r
√

λ
r
√

λ

)n−1
(see for example [10], [16]) and we have

the exact expression for the total scalar curvature associated to W :

∫

Gm(r)
W̃ = cn−1(n− 1)(n− 2)AW (n− 1)

(
sin r

√
λ√

λ

)n−1−2ν

. (4.3)

We emphasize that the above total scalar curvature does not depend on the base
point m.

In order to obtain a power series expansion of a total scalar curvature we need
the volume density function of a Riemannian manifold.

Lemma 4.2. Let θm be the volume density function at a point m. Then we have

θm (expm(ru)) =
s∑

α=0

rαθα(u) + O
(
rs+1

)
, (4.4)

where θα(u), α ≥ 2 is a partial curvature invariant of degree α in the direction of
u with α degrees of freedom. The first terms of this power series expansion are

θm (expm(ru))=1− 1
6
ρuu(m)r2 − 1

12
∇uρuu(m)r3

+
(
− 1

180

n∑

a,b=1

R2
uaub +

ρ2
uu

72
− 1

40
∇2

uuρuu

)
(m)r4 + O

(
r5

)
.

(4.5)

Proof. We have the relation ([4], [16]), hm(expm(ru))= n−1
r + ∂

∂r log θm (expm(ru)),
where hm is the mean curvature of a geodesic sphere. Then,

θα(u) =
[α/2]∑

β=1

1
β!


 ∑

γ1+···+γβ=α

hγ1(u) · · ·hγβ
(u)

γ1 · · · γβ


 , α ≥ 2 (4.6)

which proves the assertion concerning the degrees. The first terms of this power
series expansion are well-known ([4], [16]). ¤

We define cn−1 = nπ
n
2 /

(
n
2

)
!, which is the volume of the Euclidean sphere of

radius 1 in Rn. Here (n
2 )! = Γ(n

2 + 1), where Γ is the gamma function defined by

Γ(α) =
∫∞

0 e−ttα−1dt =
∫∞
−∞ e−t2 |t|2α−1dt.

The following result is a technical lemma which will be used in the proof of the
Theorem 4.4. We will only point out the main steps of the proof.

Lemma 4.3. Let ω be a covariant tensor of order 2ν. Then,

∫

Sn−1

ωu···udu=
cn−1

2νν!
ν−1∏
α=0

(n + 2α)

n∑
α1···α2ν=1

δα1α2 · · · δα2ν−1α2ν

∑

σ∈S2ν

ωασ(1)···ασ(2ν)
. (4.7)

Proof. We proceed by induction. If ν = 1, (4.7) is a well-known fact. See, for
example, [11]. Next, let ω be a covariant tensor of order 2(ν + 1). Choose an
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orthonormal basis {ei} at the origin of Rn and write the unit vector u with respect
to that basis as u =

∑
i xiei. Then

∫

Sn−1

ωu···udu =
n∑

α1···α2ν+2=1

ωα1···α2ν+2

∫

Sn−1

xα1 · · ·xα2ν+2du. (4.8)

We recall the formula for integrating polynomials along Euclidean spheres [10]:
∫

Sn−1

xβ1
1 · · ·xβn

n du = cn−1
β1) · · ·βn)

n(n + 2) · · · (n + β1 + · · ·+ βn + 2)
, (4.9)

where
2β) = (2β − 1)(2β − 3) · · · 3 · 1, β ∈ N,

0) = 1, 2β − 1) = 0, β ∈ N.
(4.10)

Concentrating on the last index α2ν+2 and using (4.9), (4.8) can be reduced to

∫

Sn−1

ωu···udu =
1

n + 2ν

n∑
α=1

2ν+1∑

β=1




∫

Sn−1

ω(u, . . . , u, eα
↓
β

, u, . . . , u, eα)du


 . (4.11)

Now the inner integral is a tensor of order 2ν, so we get (4.7) by induction. ¤

Theorem 4.4. Let W be a simple Weyl invariant. The total scalar curvature
associated to W has a power series expansion:

W(m, r) =
∫

Gm(r)
W̃ = cn−1r

n−1−2ν




[s/2]∑
α=0

r2α W2α(m)∏α−1
β=0(n+2β)

+ O
(
rs+1

)

, (4.12)

where W2α(m), α ≥ 1 is a scalar curvature invariant of M at m of degree α, and

W0(m) = (n− 1)(n− 2)AW (n− 1),

W2(m) =
(n− 2)(n− 2ν − 1)AW (n− 1)

6
τ(m),

W4(m) =

(
C1

W (n− 1)‖R‖2 + C2
W (n− 1)‖ρ‖2 + C3

W (n− 1)τ2

− (n− 2)(n− 2ν − 1)AW (n− 1)
20

∆τ

)
(m).

(4.13)

Moreover, C1
W , C2

W and C3
W are polynomials depending only on n − 1 which are

uniquely determined by (4.13). We also have the relation

2C1
W (n− 1) + (n− 1)C2

W (n− 1) + n(n− 1)C3
W (n− 1) =

=
(n− 2)(n + 2)(n− 1− 2ν)(5n− 10ν − 7)

360
AW (n− 1).

(4.14)

Proof. By definition we have

W(m, r) =
∫

Gm(r)
W̃ = rn−1

∫

Sn−1

(
W̃θm

)
(expm(ru))du. (4.15)

Using Theorem 3.4 and Lemma 4.2, we get

(
W̃θm

)
(expm(ru)) =

s−2ν∑
α=−2ν

rαW̄α+2ν(u) + O
(
rs−2ν+1

)
, (4.16)
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where W̄α(u), α ≥ 2 is a partial curvature invariant in the direction of u with
degree α such that for all the Weyl invariants involved in its construction the
number of degrees of freedom has the same parity as α. In fact, we have W̄α(u) =∑α

β=0 W̃β(u)θα−β(u), α ≥ 2, and in particular, using (3.13) and (4.5),

W̄0(u) = (n− 1)(n− 2)AW (n− 1),

W̄1(u) = 0,

W̄2(u) = AW (n− 1)

(
ντ − 4ν(n + 1) + (n− 1)(n− 2)

6
ρuu

)
(m),

W̄4(u) = ω̄4(u) +
AW (n− 1)

2

(
ν∇2

uuτ

−40ν(n + 3) + (n− 1)(n− 2)
20

∇2
uuρuu

)
(m),

(4.17)

where ω̄4(u) is a simple directional curvature invariant of degree 4. Then, (4.15)
becomes

W(m, r) = rn−1

(
s−2ν∑

α=−2ν

rα

∫

Sn−1

W̄α+2ν(u)du + O
(
rs−2ν+1

)
)

. (4.18)

If α is odd, W̄α+2ν(u) is a linear combination of Weyl invariants in the direction
of u with an odd number of degrees of freedom. Each one of them is an odd function
on a sphere, and thus its integral vanishes. Hence, we have

W(m, r) = rn−1




[ s−2ν
2 ]∑

α=−ν

r2α

∫

Sn−1

W̄2α+2ν(u)du + O
(
rs−2ν+1

)

 . (4.19)

The problem of integrating W̄2α(u), with α ≥ 1, reduces to the integration of
directional Weyl invariants of degree 2α in the direction of u with an even number
of degrees of freedom. This number is at most 2α. For such an invariant, Lemma
4.3 asserts that its integral is a linear combination of products of total traces,
divided by certain polynomial. This immediately implies that

∫
Sn−1 W̄2α+2ν(u)du

is a curvature invariant at m with degree 2α, and (4.12) follows.
For the explicit expressions of W̄0, W̄2 and W̄4, we may use the general method

described in this proof and just do the calculations taking into account (4.17).
Examples of those may be found in [4], [10] and [11]. Finally, we integrate ω̄4(u).
As this is a simple curvature invariant at m of degree 4 we have

∫

Sn−1

ω̄4(u)du =
1

n(n + 2)

(
C1

W (n− 1) ‖R‖2

+C2
W (n− 1)‖ρ‖2 + C3

W (n− 1)τ2
)

(m),
(4.20)

and from here we get the expression for W4(m). For the Taylor power series ex-
pansion of the function in (4.3) we get

∫

Gm(r)
W̃ = cn−1(n− 1)(n− 2)AW (n− 1)rn−1−2ν

(
1− n− 1− 2ν

6
λr2

+
(n− 1− 2ν)(5n− 10ν − 7)

360
λ2r4 + O

(
r6

))
.

(4.21)
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Since for an n-dimensional space of constant sectional curvature λ we have τ =
n(n− 1)λ, ‖R‖2 = 2n(n− 1)λ2, ‖ρ‖2 = n(n− 1)2λ2, ∆τ = 0, (4.20) becomes

∫

Sn−1

ω̄4(u)du =
n− 1
n + 2

(
2C1

W (n− 1)

+(n− 1)C2
W (n− 1) + n(n− 1)C3

W (n− 1)
)
λ2.

(4.22)

From the last two equations we get the desired result. ¤

We finish this section by writing down, for further use, the introduced functions
B1

W and B2
W for the simple Weyl invariants of degree 2, 4 and 6 considered in

Section 2.
First, for the scalar curvature we have

W C1
W (n− 1) C2

W (n− 1)

τ − (n+2)(n+3)
120

n2+5n+21
45

For degree 4 we have

W C1
W (n− 1) C2

W (n− 1)

‖R‖2 59n2−93n−10
60

2(n2−37n+60)
45

‖ρ‖2 −n3−9n2−16n−20
120

n3+31n2−16n−120
45

τ2 − (n−2)(n−1)(n2+13n+10)
120

n4+10n3+43n2−14n+120
45

Finally, for order 6:

W C1
W (n− 1) C2

W (n− 1)

τ3 − (n−1)2(n−2)2(n2+21n+14)
120

(n−1)(n−2)(n4+18n3+118n2+105n+238)
45

τ‖ρ‖2 − (n−1)(n−2)(n3−n2−28n−28)
120

(n−2)(n4+38n3+28n2+15n+238)
45

τ‖R‖2 (n−1)(n−2)(59n2−101n−14)
60

2(n4−32n3+248n2−135n+238)
45

ρ̌ − (n−2)(n3−41n2−28n−28)
120

(n−2)(n3+79n2−73n−238)
45

〈ρ⊗ ρ, R̄〉 −n4−23n3+34n2+28n+56
120

n4+57n3−141n2−2n+476
45

〈ρ, Ṙ〉 59n3−179n2+188n+28
60

2(n3+9n2+77n−238)
45

R̄ 179n2−261n−14
30

4(n2−129n+119)
45

ˇ̄R −n3+138n2−289n−42
120

n3+78n2+56n−357
45

5. Homogeneity and two-point homogeneous spaces

If M is a locally homogeneous Riemannian manifold, its total scalar curvatures
W(m, r) =

∫
Gm(r) W̃ do not depend on the point m and thus one may wonder

whether the converse is also true. The answer is known to be positive for several
special cases, but the problem remains open in its full generality. In our general
context, positive answers can be given in a similar way as a consequence of Theorem
4.4 and the following result (we omit the details, which are similar to those in [3]).
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Theorem 5.1. Let W be a Weyl invariant such that AW (n − 1) 6= 0. If a Rie-
mannian manifold (Mn, g) of dimension n > 2, n 6= 2ν + 1 verifies that W(m, r) is
independent of the point m, then the scalar curvature and the quadratic invariant
C1

W (n− 1)‖R‖2 + C2
W (n− 1)‖ρ‖2 are constant.

In particular, if W = 1, S(m, r) =
∫

Gm(r) 1 is the volume of the geodesic sphere
Gm(r). A manifold having the property that the volume of geodesic spheres is
independent of the center is called ball-homogeneous [3], [7]. Also, a Riemannian
manifold is said to be scalar curvature homogeneous if T (m, r) =

∫
Gm(r) τ̃ is in-

dependent of m [3], [9] (this is also a particular case of our context for W = τ).
Next, we show that both notions above are equivalent for Einstein manifolds, thus
answering the question already stated in [3].

Theorem 5.2. Ball-homogeneity and scalar curvature homogeneity are equivalent
in the class of Einstein manifolds.

Proof. We denote by ′ the derivative with respect to the radius r. We recall the
relation [16]:

hm(expm(ru)) =
n− 1

r
+

∂

∂r
log θm(expm(ru)), (5.1)

where hm denotes the mean curvature of the geodesic sphere. Deriving, and using
(5.1), we get

S′(m, r) =
d

dr

[
rn−1

∫

Sn−1

θmdu

]
= rn−1

∫

Sn−1

(hm θm)du. (5.2)

Again, deriving with respect to the radius and using (5.1), we obtain

S′′(m, r) =
d

dr

[
rn−1

∫

Sn−1

(hm θm)du

]

= rn−1

∫

Sn−1

(
n− 1

r
hm θm + h′m θm + hm θ′m

)
du

= rn−1

∫

Sn−1

((
h2

m + h′m
)
θm

)
du.

(5.3)

Taking traces in the Gauss equation, we get the scalar curvature of a geodesic
sphere Gm(r)

τ̃ = τ − 2 ρuu + h2
m − ‖σm‖2. (5.4)

Next, we consider the Ricatti equation, σ′+σ2 +Ru = 0, where Ru is the Jacobi
operator x 7→ Ruxu. Taking traces, we get h′m + ‖σm‖2 + ρuu = 0. Therefore, (5.4)
becomes

τ̃ = τ − ρuu + h2
m + h′m. (5.5)

Using the above equality, (5.3) becomes

S′′(m, r) = T (m, r)− rn−1
∫

Sn−1

((τ − ρuu) θm). (5.6)

In the class of Einstein manifolds τ − ρuu = n−1
n τ is constant. Thus, we get

S ′′(m, r) = T (m, r)− n− 1
n

τ S(m, r). (5.7)

As τ is constant, T depends on m if and only if S depends on m. ¤
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Now, we turn our attention to the characterization of two-point homogeneous
spaces using the total curvatures of geodesic spheres associated to simple Weyl
invariants.

Theorem 5.3. Let (Mn, g) be a Riemannian manifold of dimension n > 2. Sup-
pose that the total scalar curvature associated to a simple Weyl invariant of degree
ν is the same as for a Riemannian manifold of constant sectional curvature λ. If

AW (n− 1) 6= 0, n 6= 2ν + 1,

C1
W (n− 1) 6= 0,

C1
W (n− 1)

(
C2

W (n− 1) +
2

n− 1
C1

W (n− 1)

)
≥ 0,

(5.8)

then M is a Riemannian manifold of constant sectional curvature λ.

Proof. As we have already seen that for a manifold of constant sectional curvature
λ, we have

∫

Gm(r)
W̃ = cn−1(n− 1)(n− 2)AW (n− 1)rn−1−2ν

(
1− n− 1− 2ν

6
λ r2

+
(n− 1− 2ν)(5n− 10ν − 7)

360
λ2r4 + O

(
r6

))
.

(5.9)

As AW (n − 1) 6= 0 and n 6= 2ν + 1, comparing (5.9) with (4.12) and (4.13) we
immediately get τ = n(n− 1)λ . Then, (4.12) becomes

W(m, r) = cn−1r
n−1−2ν

{
(n− 1)(n− 2)AW (n− 1)

−r2

6
(n− 2)(n− 1− 2ν)AW (n− 1)(n− 1)λ

+
r4

n(n + 2)

(
C1

W (n− 1)‖R‖2 + C2
W (n− 1)‖ρ‖2

+n2(n− 1)2C3
W (n− 1)λ2

)
(m) + O

(
r6

)}
(m).

(5.10)

Comparing the coefficients of r4 in (5.9) and (5.10) and taking into account that
τ = n(n− 1)λ we easily get

C1
W (n− 1)

(
‖R‖2 − 2

n− 1
‖ρ‖2

)

+

(
C2

W (n− 1) +
2

n− 1
C1

W (n− 1)

)(
‖ρ‖2 − 1

n
τ2

)
= 0.

(5.11)

We know that for every Riemannian manifold of dimension n > 2, ‖ρ‖2 ≥ 1
nτ2

with equality if and only if the manifold is Einstein and ‖R‖2 ≥ 2
n−1‖ρ‖2 with equal-

ity if and only if the manifold has constant sectional curvature [1]. The hypotheses
of this theorem imply that both terms of the left-hand side of (5.11) are simultane-
ously non-negative or non-positive (depending on the sign of C1

W (n)). Then, both
addends must be zero and hence ‖R‖2 = 2

n−1‖ρ‖2. Thus, M has constant sectional
curvature. As τ = n(n− 1)λ, the sectional curvature is precisely λ. ¤

We state similar theorems for the other two-point homogeneous spaces. See [4]
or [11] for more information. We delete the details.
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Theorem 5.4. Let (M2n, g, J) be a Kähler manifold of complex dimension n > 1.
Suppose that the total scalar curvature associated to a simple Weyl invariant of
degree ν is the same as for a Kähler manifold of constant holomorphic sectional
curvature λ. If

AW (2n− 1) 6= 0,

C1
W (2n− 1) 6= 0,

C1
W (2n− 1)

(
C2

W (2n− 1) +
4

n + 1
C1

W (2n− 1)

)
≥ 0,

(5.12)

then M is a Kähler manifold of constant holomorphic sectional curvature λ.

Theorem 5.5. Let M4n be a quaternionic Kähler manifold of real dimension 4n.
Suppose that the total scalar curvature associated to a simple Weyl invariant of
degree ν is the same as for a quaternionic Kähler manifold of constant Q-sectional
curvature λ. If

AW (4n− 1) 6= 0, C1
W (4n− 1) 6= 0, (5.13)

then M is a quaternionic Kähler manifold of constant Q-sectional curvature λ.

Combining the previous results we get:

Theorem 5.6. Let (Mn, g) be a Riemannian manifold of dimension n ≥ 2 such
that its holonomy group is contained in the holonomy group of a two-point homo-
geneous space of dimension n. Suppose that the total scalar curvature associated to
a simple Weyl invariant of degree ν is the same as for the corresponding two-point
homogeneous space. If

AW (n− 1) 6= 0, n 6= 2ν + 1,

C1
W (n− 1) 6= 0,

C1
W (n− 1)

(
C2

W (n− 1) +
2

n− 1
C1

W (n− 1)

)
≥ 0,

(5.14)

then M is locally isometric to that space.

Example 5.7. Using the expressions of examples 2.2 and 3.6, we may check the
conditions of Theorem 5.6. We give a table with those simple Weyl invariants which
can be used for characterizing the two-point homogeneous spaces and the dimension
n for which the conditions of Theorem 5.6 hold.

W C2
W (n− 1) + 2

n−1C1
W (n− 1) n

‖R‖2 4n3+25n2+109n−270
90(n−1) n > 2, n 6= 5

‖ρ‖2 4n4+117n3−161n2−368n+540
180(n−1) 3 ≤ n ≤ 10, n 6= 5

τ‖ρ‖2 (n−2)(4n4+149n3+115n2+144n+1036)
180 3 ≤ n ≤ 6

τ‖R‖2 4n4+49n3+335n2+24n+1036
90 n > 2, n 6= 7

ρ̌ (n−2)(4n4+309n3−485n2−576n+1036
180(n−1) 3 ≤ n ≤ 41, n 6= 7

〈ρ⊗ ρ, R̄〉 4n5+221n4−723n3+454n2+1828n−2072
180(n−1) 3 ≤ n ≤ 21, n 6= 7

〈ρ, Ṙ〉 4n4+209n3−265n2−696n+1036
90(n−1) n > 2, n 6= 7

Ř (n−2)(4n2+25n+259)
45(n−1) n > 2, n 6= 7
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Remark 5.8. If n = 3, the Gauss-Bonnet Theorem gives T (m, r) = 8π. Hence, T is
a topological invariant. Generalizations of the Gauss-Bonnet Theorem show that
some total scalar curvatures have no geometrical meaning in certain dimensions [5].

Let now W be a simple Weyl invariant of order 2ν. Consider a Riemannian
manifold of constant sectional curvature of dimension 2ν + 1. Then (4.3) shows

W(m, r) = 2ν(2ν − 1)c2νAW (2ν). (5.15)

Thus, W(m, r) is an invariant for (2ν + 1)-dimensional manifolds of constant sec-
tional curvature and therefore it cannot be used to determine the curvature.

Remark 5.9. The third condition in Theorem 5.6 can be dropped if the manifold
is assumed to be Einstein or locally conformally flat (see [5] or [11] for similar
situations).
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